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A b s t r a c t  

Certain Lie algebras, represented as linear partial differential operators of first order, are 
used to derive autonomous systems of differential equations which involve limit cycles. 
To illustrate the approach an example is given. 

1. I n t r o d u c t i o n  

Dynamic nonlinear systems play an important role in science. We shall 
assume that the evolution of the system is governed by a real ordinary differ- 
ential equation, that is, the state x ( O  = ( x t ( t ) ,  • • . ,  x n ( t ) )  of the system at time 
t is a point along the solution of the differential system 

xi = Y/(x1 . . . . .  Xn ) ,  i = 1 . . . . .  n (i .1) 

which passes through the point x i  ° at time t = to. The dots stand for differenti- 
ation with respect to the independent variable t. 

In particular, those systems are of interest which contain limit cycles. The 
importance of limit cycles is that they represent self-sustained oscillations in 
nonlinear, nonconservative systems. Oscillations of this kind do not depend on 
the initial conditions of the differential equation. 

In the theory of nonlinear electronic networks and other applicatons to 
physics, limit cycles have been studied by several authors (van der Pot, 1926); 
Krogdahl, 1955; Blaquiere, 1966; Vojtasek and Janac, 1969; Andronow et al., 
1969. The connection of limit cycles and quantum mechanics has been investi- 
gated by e Silva et al. (1960). Also in the theory of chemical and biological 
oscillators, limit cycles are important (Glansdorff and Prigogine, 1971 ; 
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Pavlidis, 1973; Nicolis and Portnow, 1973). From the mathematical point of  
view interest in this field is mainly focused on three aspects. The first one is 
the existence of limit cycles for a given differential equation (Levinson and 
Smith, 1942; Aggarwal, 1972). Another aspect is that of stability (Cesari, 
1963; Nemytskii and Stepanov, 1960; Yoshizawa, 1975). A final important 
question is that of perturbation methods (Hale, 1963; Kruskal, 1962; Kummer, 
1971). Note that in most of  the works cited only the two-dimensional case has 
been considered. 

In the present paper we consider the problem from another point of view, 
which has been overlooked so far. We state the connection between a certain 
class of Lie algebras, represented as linear partial differential operators of first 
order, and a class of nonlinear autonomous systems of differential equations 
that contain limit cycles. We study autonomous analytic systems of three 
coupled first-order differential equations, representing a flow in the three- 
dimensional space. Note that the extension to higher dimensions is straight- 
forward. 

The basic idea of  the method described consists of finding for a given vector 
field X On M = R n (M = manifold) the most general vector field Y such that 

IX, Y] = •Y  (1.2) 

[ , ] denotes the commutator and ), is an arbitrary function. Every vector 
field has an autonomous system of differential equations associated with it 
and vice versa. For example, according to equation (1.1) we have 

n a 

Y =  ~, Yi(x)  (1.3) 
i= 1 ~Xi 

ff we have found the vector field Y, then the limit cycle, assuming it exists, of  
the system with the vector field Y can be obtained. Thus our problem consists 
of two parts. The first one is that of finding, for a given vector field X, the most 
general differential equation invariant under this vector field and, since we are 
considering autonomous systems, the associated system. As we shall see later, 
the vector field Y contains n arbitrary functions, where, however, the argument 
is given by the invariants of the vector field X. Therefore Yrepresents a class of  
vector fields (henceforth called vector field for short). In two dimensions the 
procedure of obtaining the vector field Yhas been known for a long time 
(Cohen, 1911 ; Eisenhardt, 1961; Campbell, 1966; Bluman and Cole, 1974). It 
is clear that, in general, this system does not include limit cycles. Hence the 
second question arises as to how the vector field X(o r  the corresponding 
differential equation) must be chosen in order to obtain systems containing 
limit cycles. In Section 2 we investigate some He algebras, represented as 
linear partial differential operators of first order, on which the starting vector 
field Xis built up. Moreover we reveal how to obtain the vector field Y, which 
fulfills equation (1.2). 

In Section 3 we derive the basic theorem. Section 4 is devoted to a widely 
discussed example. 
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2. Lie Algebras 

Consider the real non-Abelian Lie algebra so(n), denoted by L1, where the 
basis is given by the set 

x~ ~ -xj~-~-i :  i=- 1 . . . . .  . - 1 ; ] - - 2  . . . . .  . , i < ]  (2.1) 

As a useful abbreviation we put 

x q  = x i - -  - xj - -  (2.2) 
~x i ~xi 

The commutators yield 

[Xkl, Xq] = ~uXk] + ~ikX]l + 8]kXu + 5]~Xik (2.3) 

The dimension of the Lie algebra is given by dimL 1 = n(n - 1)/2. Note that 
the Lie algebra L1 is simple. Thus this Lie algebra is nonsolvable and therefore 
not nilpotent. As a consequence the center is C(L 1) = (0}. For n = 3 we have 
the basis X12, X13, X23 satisfying 

[X12,X13] = - X 2 3 ,  [X23, X12] = - X 1 3 ,  [Xa3,X23] = -X12 (2.4) 

Now we introduce the useful vector field 

3 

z :  5 xii (2.5) 
i--1 

where Xii = x i ~ / ~ x i ,  Then we find that 

[Z, Xij] = 0 (2.6) 

Hence the set (Z)  O (L1) forms a basis of  a Lie algebra, denoted by L2, and 
it is obvious that the center is given by C(L2) = (0, Z) .  

It is clear that the set (Qk = O/3xk, k = 1,2, 3) forms a basis of an Abelian 
Lie algebra. Since 

[Qk, Xi]] = 6k iQ i  - 6 k j Q i  (2.7) 

we find that the set L 3 = (Qx, k = 1,2, 3) o (L2) also forms a basis of a Lie 
algebra. Finally we observe the useful property that 

[Qi - Qj, Xki  + Xxj] = 0 (2.8) 

The Lie algebras L1, L2, and L.3 will be used in the following in order to con- 
struct vector fields X and Y where the commutator vanishes. 

Now we wish to find the invariants of  any linear combination of  the vector 
fields belonging to L1. Invariants of  real tow-dimensional Lie algebras have 
been investigated by Patera et al. (1976). The problem of finding invariants 
will be reduced to that of  solving a certain set of linear first-order partial 
differential equations. These may have polynomial solutions, giving rise to 
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Casimir operators (lying in the enveloping algebra of the corresponding Lie 
algebra). They may also have other invariants, i.e., ratios of  two polynomials 
and general invariants (Patera et al., (1976). In the present paper we are only 
interested in polynomial solutions. Note that for some Lie algebras the corres- 
ponding linear first-order partial differential equations have no solutions. In 
the case under investigation we find that the only invariant is given by 

n 2 (]~i=1 X i  - -  Cl), where c 1 is a real constant. It follows at once that any linear 
combination of the basis elements of  L ~ has this quantity as an invariant. Here 
it is possible that further invariants exist. Consider the Lie algebra L 1 with 
n = 3 and the linear combination 

X = X12 + X13 (2.9) 

Then we have as further invariant x2 - x3 + c2, where c2 is a real constant. 
We are going to determine the vector field Y such that the commutator 
[X, Y] vanishes, where Xis  a linear combination of the basis elements of  L1. 
First of  all we consider the rule 

[X, fZ] = (Xf)Z +fIX, Z] (2.10) 

If the argument of  the function f is given by the invariants of  the vector field 
X, then the first term on the right-hand side is equal to zero. 

An additive part of  the vector field X can be given at once, namely, 

Y1 = f iX  (2.1 l) 

In what follows, the argument of  the functions f l ,  f2, and f3, determined by 
the invariants of X, is omitted. Considering the Lie algebra L 2 we obtain as 
the second part 3 

Y2 =f2 E Xii (2.12) 
i = 1  

To obtain the third part we must investigate the Lie algebra L3. For example, 
let X =. X12 +X13. Then we have 

[x~= +X13,  Q2 - Q31 = 0 (2.13) 

3. Basic Theorem 

The basic idea for obtaining nonlinear systems containing periodic solutions 
and, as a special case, limit cycles is as follows: Let the real analytic vector 
fields 

3 3 3 
X = ~ Xi(x) - ' - ,  Y = ~ Y,(x) ~ (3.1) 

i= 1 Oxi i= 1 ~xi 

on R 3 be given. We assume that equation (1.2) holds. This leads to 

3[ < 
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The vector field can be cast into the matrix form 

\a/axe/ (3.3) 

The determinants of the 2 x 2 submatrices on the right-hand side of  equation 
(3.3) have the form 

X1Y2  - Y1X2,  X I Y  3 - Y1X3, X 2 Y  3 - Y2X3 (3.4) 

Applying equation (3.2), it follows that 

3 . . . a Y k +  aY~ 
Y(Xk Y~- YkXt)= ~=1 y~ (Y~x~- :~xe) Tx~ (Xk Y~- YkX~) ax- T 

(3.s) 

3 

x(xk Y~- rkx~): 7. 
i=1 

(g tx~-  x~g9 axk + (xk g~-  Ykxt) axz 
axi axi 

+ x(xkYz - gix~) 

Observe that on the right-hand side of equations (3.5) the 2 x 2 submatrices 
appear described by equations (3.4). Now we investigate the following 
equations: 

Xl Y2 - Y1X2 = O, X l  Y3 - 1II X3 = 0, )(2 Y3 - Y2X3 = 0 

(3.6) 

Note that the function f l  does not appear in equations (3.6). It can easily be 
seen that the equations (3.6) can be fulfilled by inserting the critical points of 
X. Furthermore, for a certain choice off2  and f3 the equations (3.6) can also 
be fulfilled. In these cases the invariants of  X, appearing as the argument of 
f2 and ]'3, are chosen so that the intersection of the surfaces, determined by the 
invariants, leads to a closed curve. The curve obtained is invariant with respect 
to X and Y. The reason that the curve is closed follows from the fact that X 
is a linear combination of elements of L 1. 

Consider the vector field 

4. An  example 

X = X12 +X13 (4.1) 
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with the associated system 

:?2 = 0 x2 

:? 0 

(4.2) 

The critical points o f  X are given by 

{ x l  = 0; x 2 = - x 3 )  (4.3) 

With respect to the system of  the differential equations the critical points may 
be interpreted as the time-independent solutions (also called steady state 
solutions). The eigenvalues o f  the matrix on the right-hand side o f  equation 
(4.2) are found to be Xl,2 = -+i, X 3 = 0. From the foregoing it is evident that 
the invariants with respect to the vector field X are 

{xa 2 +x2 2 + x 3 2 -  c l , x 2 - x 3 -  c2} (4.4) 

Moreover, as described above too, the vector field X commutes with every 
part of  the vector field 

3 

Y = f l X + f 2  ~ Xii +f3(Q2 - Q3) (4.5) 
i=1 

f l ,  f2, and f3 are arbitrary functions, where the argument is given by the 
invariants of  the vector field X. The vector field Yleads to the autonomous 
system 

X1 = (--X2 -- x 3 ) f l  + X l f 2  

22 = x l f l  +xz¢'2 +f3  (4.6) 

it3 =xlf~ + x ~ z - f 3  

Condition (3.6) yields 

( - x l  2 - x 2 x 3  - x 2 2 ) f 2  + ( - x ~  - x 3 ) j 5  = 0 

( - x l  2 - x2x3 - x32)f2 + (x2 + x3)f3 = 0 (4.7) 

( - x l x 2  + xlx3) f2  - 2xl f3  = 0 

Note that the function f l  does not occur here. It can easily be seen that the 
equations (4.7) can be fulfilled by inserting the critical points of  X. Whether 
or not other solutions of  the equations (4.7) exist depends on the form of the 
function f2 and f3.  We put j72 = 1 - x l  2 - x2 2 - x32,J~3 = x2 - x3,  and ~ 
f l  = 1. Moreover, we introduce two real parameters p and v and we set f2 = Pf2 
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and f3 = uff3(P, u ~ 0). Then we have the nonlinear system 

2 1  = - -X2  --  X 3 +#Xl(1 --Xl 2 -- X22 -- X32) 

2 2 ----X 1 +P.X2(1 --X12 --X2 2 - -X3 2) +P(X 2 -- X3) (4.8)  

2 3 =X 1 +/dX3(1 --X12 -- X2 2 - -X3 2) -- p(X 2 - - X 3 )  

Hence ifxa 2 +x2 2 +x3  ~ = 1 and x2 = x3, then the equations (4.7) are also 
satisfied. Both equations define a surface and the intersection o f  them leads to 
a dosed curve, i.e., a periodic solution o f  the systems (4.2) and (4.8). This 
periodic solution is the limit cycle of  system (4.8). The curve can be given 
explicitly, namely, 

x l ( t )  = cost, x2(t)  = sint/21/2, xa(t)  = sint/21/2 (4.9) 

We note in passing that Hopf's bifurcation theorem may be applied to 
equation (4.8) in order to prove that the system contains a periodic solution 
(Hopf, 1942). 

Now we ask which rote the real parameters # and p play. Obviously for 
certain choices of/a and u other critical points also exist besides the critical 
point x = 0. We set/~ = 1. If u <~ -½, then only one real critical point exists. 
On the other hand, at v i> -½ two other critical points exist, namely, Xl = 0, 
x2 = -+ [(1 + 2p)/2] 1/2, X3 = + [(1 + 2U)/2] 1/2. The quantity p is important for 
the stability o f  the system, i.e., the stability o f  the limit cycle. The stability o f  
the limit cycle can be investigated via Liapunov's theory (Nemytskii and 
Stepanov, 1960). 

5. Conclusion 

In summary, we establish the following: For a given autonomous system 
5c = X(x)  and therefore a given vector field X we have derived a vector field Y 
with an associated autonomous system ± = Y(x) such that equation (1.2) 
holds. In the two-dimensional case the methods for such a construction have 
been known for a long time. In the present paper we have considered the 
three-dimensional case and have constructed for a special vector field X a 
vector field Y such that equation (1.2) holds. Applying equation (1.2) we are 
able to obtain invariant surfaces and invariant curves of  the vector field Y. 

So far it is obvious that the construction o f  the vector field Y, when a 
vector field X is given, does not depend on whether or not the system 
Yc = Y(x) contains limit cycles. In order to consider this point we have to choose 
a special class o f  vect0r fields X. The basic roles are played by the invariants of  
X, say, 71(x) and 72(x). The only requirements are that 3'l(X) = 0 and 3'2(x) = 0 
define surfaces and that the intersection of  them lead to a closed curve. 

Appendix 

The given approach can also be considered from another point of  view. Let M = R '~ 
(or an open subset ofRn) .  Xis a vector field onMand  a an r-form onM(r<.n). We 
call a a conformal invariant r-form o f X i f L x a  = ga. Lxo~ is the Lie derivative of  a 
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with respect to X and g an arbitrary smooth function. For  practical calculation 
one uses the rule L x a  = X -~ (da) + d (X  J a), where X ~ a is the inner product 
of  X and a .  

The relation between (1.2) and the invariance requirement given above can 
be seen by  the following theorem. 

Theorem A.1. L e t M = R  n (or an open subset of  R n) and w = d X l A . . .  Adxn. 
Let X a n d  Ybe  two vector fields such that IX, Y] = f Y a n d  a = y_2 co. Then 

L x a  = ( f  + divX)a 

Proof  L x ( Y  J co) = [X, Y] -~ co + Y-~ (Lxco) = 

= q ~  -~ co+  Y ~ ( X - ~  aco + a ( x ~  co))= 

= f ( Y - ~  co) + Y ~ ( a ( x - ~  co)) = ~ Y ~ co) + Y - ~  (divXco)= 

= (f+ divX)(Y-~ co). 

Hence we have g = f + divX. 

There are the following properties. Let X b e  a vector field on M, and a ,  t3 
conformal invariants with respect to X. Then X ~ a and a A 3 are conformal 
invariants with respect to X. I f g  is a constant,  then de~ is a conformal 
invariant. Finally, let c~ be a conformal invariant with respect to X and Y 
where g is a constant. Then a is a conformal invariant with respect to the 
vector field IX, Y]. 

In the present approach we have the requirement 

X J ( Y - ~  c o ) = 0  

instead of  equation (3.6). 
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